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LETTER TO THE EDITOR 

Pattern formation in reversible cellular automata 

J Viiialst and J D GuntonS 
t Department of Physics, Camegie-Mellon University, Pittsburgh, PA 15213, USA 
$ Department of Physics, Temple University, Philadelphia, PA 19122, USA 

Received 13 May 1986 

Abstract. We analyse the dynamics of pattem formation in two examples of reversible 
cellular automata which have been argued to belong to the critical dynamics universality 
class of the kinetic king model. The results obtained suggest that their dynamical evolution 
is different from the analogous kinetic king model. 

Cellular automata have been introduced as simple mathematical models capable of 
generating very complex behaviour. They consist of a set of identical units-described 
by a discrete variable-that interact locally through prescribed rules (von Neumann 
1966; for recent reviews see Wolfram (1983, 1984a)), where space and time are 
discretised. They have been introduced as models for many different processes, ranging 
from physics to biology and computer science. Starting from random initial states, 
the rules (which can be either stochastic or deterministic) iterate into stationary patterns 
that fall into four broad categories (Wolfram 1984a): the evolution leads to (i) a final 
homogeneous state, (ii) a set of separated simple states or periodic structures, (iii) a 
chaotic pattern and (iv) complex localised structures. Extremely simple rules can thus 
lead to self-organisation in the system, displaying qualitatively different behaviour for 
different choices of the rule. 

One-dimensional cellular automata have been extensively analysed (see, for 
instance, Wolfram 1984b), but less attention has been paid to the higher-dimensional 
counterparts. Such a study is significant for comparisons with many experimental 
results on pattern formation in physical systems (Packard and Wolfram 1985). In 
addition, it seems interesting to us to analyse how cellular automata develop spatial 
structure as opposed to the more conventional analysis of the structure of the stationary 
patterns given by a certain rule. The time development of such spatial structure could 
also be of interest to experimentalists. 

In fact, similar problems have arisen in connection with the dynamical evolution 
of kinetic models defined by conventional master equations on a lattice (Wu 1982). 
Such models were originally introduced to analyse spin systems (e.g. kinetic Ising 
models) and their cooperative phenomena in thermal equilibrium. Of particular interest 
to us is their application to the problem of pattern formation during a first-order phase 
transition (Gunton et a1 1983, Binder 1985, San Miguel 1985). Although these models 
also discretise space and time and are formulated in terms of local rules, the constraint 
that the system must eventually reach thermal equilibrium for any given initial state 
leads to the restriction that the change in the local variables has to be in accordance 
with the Boltzmann weight (Glauber 1963, Kawasaki 1972). 
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Consequently, the fundamental difference between kinetic Ising models and cellular 
automata is the existence or not of invariance under time reversal or, equivalently, the 
existence of an underlying microscopic Hamiltonian dynamics. Secondly, although it 
is not strictly essential, cellular automata are synchronous, i.e. all the variables defining 
a given state are updated simultaneously whereas spins in a kinetic Ising model are 
updated sequentially (usually in a random sequence through the lattice). Although 
the significance of this distinction will be made more quantitative below, synchronous 
updating in cellular automata raises some interesting questions concerning the determi- 
nation of the underlying Hamiltonian or the very ergodic behaviour of reversible rules 
(see, e.g., Vichniac (1984); Pomeau (1984) actually discusses the definition of invariants 
for reversible rules and, in particular, he studies one of the rules considered below; 
Grinstein et a1 (1985) derived the more general reversible rule that would admit an 
underlying Hamiltonian, a rule that will also be analysed below). 

We analyse in this letter the dynamics of pattern formation in different examples 
of a subclass of reversible cellular automata that seem to have the same critical behaviour 
as the Ising model. In particular, we are interested in to what extent they also belong 
to the same dynamical universality class away from the critical point. More precisely, 
we calculate the rate at which domains of one of the degenerate stationary states of 
the model grow from an originally completely random state and compare our results 
to the standard kinetic Ising model in a similar context. 

We consider a two-dimensional cellular automaton on a square lattice with N sites, 
each occupied by an Ising spin si=*l. If P({ s i } ,  t )  is the probability of a given 
configuration at step (‘time’) t, the rule which defines the cellular automaton can be 
written as a discrete master equation: 

where Q ( { s i } l ( s i } )  is the conditional probability of finding the cellular automaton in 
state {si} at t + l  given that it was in state { s i }  at t. The conditional probability is 
normally chosen to be of the form 

where Q ( s i l s i ,  { s i , } )  is again a conditional probability in the same sense as before. The 
product is taken over all individual spins and we have made explicit the dependence 
on the neighbourhood of spin si:  {si , } .  

Detailed balance requires the existence of a Hamiltonian H ( { s i } )  such that 

for any given pair of states. 
In the cases where we refer to the Ising model, the Hamiltonian considered is 

H((Si} )  = fK sisj 
i # j  

(4) 

where the sum is restricted to the four nearest neighbours in the square lattice. Let 
us now briefly present the three models used in our study. 

In the first place, we will include the results corresponding to the standard kinetic 
Ising model whose Hamiltonian is given by (4). We note that the algorithm which is 
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actually used in a Monte Carlo simulation can be written as follows: 

p({siI, t +  1 U’ Q(silsi, {si,I)P({siI, t + ( i - l ) / N )  ( 5 )  
{s,) i 

where the unit of time is one Monte Carlo step ( N  attempts to update a spin). The 
prime in the product means that the spins are updated sequentially in some prescribed 
order. We will consider the common procedure of selecting the spins to be updated 
at random. We want to emphasise that equation (5) has an additional time dependence 
on the right-hand side which is not in the general equation (1). Consequently, in a 
practical sense, the algorithm used is defining the master equation that is being simulated 
(further details on this issue can be found in Choi and Huberman (1984), Gawlinski 
et al (1985) and Ceccatto (1986)). Notice, however, that different updating procedures 
can generate very different dynamical behaviour although they will all eventually lead 
to the same final canonical distribution, if detailed balance is satisfied. The origin of 
such a difference is the existence of additional correlations that can be introduced by 
the updating procedure. 

On the other hand, conventional cellular automata are synchronous. The first 
example of cellular automata which we wish to investigate has been introduced by 
Domany and others (Domany (1984), Vichniac (1984); the problem of the determina- 
tion of the invariants associated with this rule has been discussed by Pomeau (1984)), 
who consider an Ising model of the type given by equation (4). In order to both update 
spins simultaneously and also preserve detailed balance for the specified Hamiltonian, 
the lattice is divided into two sublattices in such a way that the spins belonging to 
each sublattice do not interact among themselves. Under that condition, all the spins 
belonging to the same sublattice are updated simultaneously, with the various sublat- 
tices being updated in a sequential manner. In our particular case we divide the square 
lattice into two interpenetrating square sublattices a and p. Given the nearest-neigh- 
bour Hamiltonian (4), each spin in the sublattice a only interacts with spins in the 
sublattice p and vice versa. The master equation which is being simulated can be 
written as 

 si}, t + 1) = c ( n o(slIsi ,  {si,})p({si}, t )  
i s , )  ica 

x n Q(silsi, {si,>)p({si}, t+f))* (6) 
i e p  

Note that with this definition of the updating rule, detailed balance is trivially satisfied. 
A closely related model (defined on a different lattice) has been analysed by Domany 
and Gubernatis (1985) in order to obtain the dynamical critical exponent. It is then 
implicitly assumed that the model defined by such a master equation will have the 
same critical behaviour as the conventional Ising model defined by equations (4) and 

The third model we wish to investigate is related to the work of Grinstein et a1 
(1985) which deals with the critical behaviour of probabilistic cellular automata (both 
reversible and irreversible). They derive the most general form of a transition probabil- 
ity that satisfies the requirements of detailed balance and simultaneity in updating the 
spins. The only restrictions on the rule are its totalistic character, i.e. 

( 1 )  or ( 5 ) .  
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where ( l / z )  X i ,  si’ is the average magnetisation of the neighbourhood i, where z is the 
number of neighbours considered, and one has the up-down symmetry 

This general form can be written as 

Q ( sllsi, 1 s,,) = [ 1 + s,s: tanh( a + bs, 1 si,)] 
i’ I ’  

(7)  

where a and b are arbitrary constants. Given the symmetries in the problem and the 
normalisation of Q, a rule is completely specified by 

f ( M ) =  Q(- l [ l ,  M ) = f [ l - t a n h ( a + b M ) ]  (8) 
where M = Xi.  s i , .  Note that in spite of the fact that the rule is quite similar to the 
Glauber choice for the transition probability in the spin-flip Ising model, the underlying 
Hamiltonian for the rule defined by equations ( l ) ,  ( 2 )  and (7)  involves first-, second- 
and third-neighbour interactions whose strength is, in general, a complicated function 
of a and b. 

In the three cases which we have studied the simulation procedure has been identical. 
We start from an initial random state and consider the evolution of the cellular 
automaton in the region of its parameter space in which the final stationary states are 
homogeneous. In the case of the Ising model (defined by (4) and (5)) and for the 
model defined in (6), the system evolves at K-’ = 0.2 (where K = J /  k,T in the standard 
Ising notation). The choice of the suitable parameters in the third model (equation 
(8)) has been made in the following way. Starting from the master equation ( l ) ,  a 
recursive relation for the average magnetisation (s)( t )  can be written in the mean-field 
limit (Grinstein et a1 1985) as 

( S ) ( t +  1) = ( s ) ( t )  -2[f((s)(t))+(s(t))f((s)(t))l (9) 

where fo and f, are the odd and even parts of f ( M )  as defined in (8). By choosing 
a = 0, the recursion relation reduces to 

( s ) ( t +  1) = tanh(b(s)(t)) (10) 
and has two fixed points: (s)* = 0 for b > 0 (a ‘paramagnetic’ state) and (s)* # 0 for 
b < 0 (a ‘ferromagnetic’ state). Consequently, we start with a random initial configur- 
ation and use a rule with a = 0, b < 0. We note that this general model equation (7) 
has also been argued to belong to the Ising universality class at the critical point. 

Consequently, in all three cases we have studied the evolution of the state of the 
system from a random state towards any of its competing degenerate stationary states. 
The details of the simulation are as follows. We use a square lattice of N = looz spins 
with periodic boundary conditions. In the case of the kinetic Ising model, we choose 
Glauber’s Q: 

Q ( - s i ( s i ,  { s i , } )  =!(1 -tanh!AhH) (11) 

where AH = H ( - s i ,  { s i } )  - H ( s , ,  {si)) and H ( { s i } )  is defined in (4). We used the 
standard master equation as defined in (5) where the spins which are to be updated 
are chosen at random. The evolution was followed for the first 100 MCS and the results 
were averaged over 100 independent runs. The same Hamiltonian has been used to 
study the second model, as defined in (6). We have analysed two different choices for 



Letter to the Editor L937 

the transition probability: the first given by equation (11) and the second by the usual 
Metropolis algorithm: 

W(-si ls i ,  { s i , } )  =min(l ,  exp(-iAH)) (12) 

(note that W is a transition rate and is not normalised). For both choices the process 
was monitored for 100 MCS (a Monte Carlo step is defined as above). The results have 
also been averaged over 100 independent runs. Finally, in the third model analysed 
(equations (7) and (8)) we have used 

f( M )  = i[ 1 - tanh( b M ) ]  (13) 

with b = -10. In this case the evolution has been analysed for 1000 MCS (where one 
MCS now corresponds to updating the whole lattice simultaneously) and the results 
have been averaged over 50 independent runs. 

In order to characterise the development of spatial structure, we use as a characteris- 
tic length the amplitude of the Bragg peak (k , )  of the structure factor (Sadiq and 
Binder 1984, Gawlinski et a1 1985): 

R2(t)  = S ( k o ,  t )  = N ( s 2 ) ( t ) .  (14) 

In our first two models (equations (5) and (6)), a unique peak develops at ko=O.  
However, in the third model (equation (7)), two distinct peaks develop at k ,  = (0,O) 
and k,  = (r/u, r/a) and grow in time (the lattice constant a is taken equal to one). 
Consequently we have analysed in the third model the following three quantities: 

R: = S ( k  = (0, O), t )  

R: = S (  k = ( r / u ,  r/a), t )  

R2 = RE+ R:. 

In the case of the ferromagnetic kinetic Ising model with non-conserved order 
parameter, theoretical studies (Allen and Cahn 1979, Kawasaki et a1 1978, Ohta et a1 
1982, Mazenko and Valls 1983, Vifials et a1 1985) and computer simulations (Gawlinski 
et a1 1985) agree that the average size R ( t )  of the growing domains follows the 
Allen-Cahn growth law: 

(16) R( t )  a t" n = L  2. 

Universality classes are commonly defined in terms of the growth exponent n. We 
present in figures 1 and 2 the results we have obtained for the different cellular automata 
considered. We also include the results for the kinetic Ising model for comparison. 

The results indicate that significant qualitative differences exist between the models 
studied despite the fact that they are claimed to have the same dynamical critical 
behaviour. In the case of the cellular automata defined by equation (6), the fact that 
one sublattice is always updated before the other introduces memory effects at the 
interfaces. With this rule, the spins belonging to the sublattice which is updated last 
will systematically experience a different local curvature since both neighbouring spins 
have always been updated first. (Note that in this model, where the order parameter 
is not conserved, the motion of the interfaces separating the different domains is driven 
by the local curvature.) This subtle effect is not noticeable (within the precision of 
our study) for the Galuber dynamics, equation (1 1). This fact can be interpreted as 
a consequence of the symmetry of the rule about AH = 0 (the probability of flipping 
a spin with no cost in energy is 0.5). In this particular case we obtain the same exponent 
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Figure 1. Average size of the domains I?([) as a function of discrete time for the different 
rules defined. cl represents the standard kinetic king model (equation (4)); A and + 
correspond to the rule defined in equation (6) with transition probabilities given by ( 1  1) 
and (12) respectively and 0 is the total average domain size given by (7). 

1 10 102 
f 

Figure 2. This figure represents the three measures of length defined in the text for the 
rule given in (7),  where all the spins are updated simultaneously. 0, A and 0 correspond 
to & ( t ) ,  RA([) and I?([) respectively. 

n =+ as for the kinetic Ising model. On the other hand, the Metropolis algorithm 
breaks this symmetry (now the probability of flipping one spin when AH = 0 is 1) and 
the growth clearly displays this memory effect. In fact, as seen in figure 1, the growth 
is faster than a power law. 

The dynamics of the third rule (equation (7)), although we obtain the same growth 
exponent n = f  for the lengths defined, is considerably more complicated. In fact, 
although the mean-field ground state is ferromagnetic if b in equation (13) is less than 
zero, the rule favours local antiferromagnetic order. As a consequence, during the 
ordering process the system contains domains of four kinds: two ferromagnetic and 
two antiferromagnetic. The growth at interfaces is still driven by local curvature, which 
is consistent with the Allen-Cahn growth law that we observe for the three characteristic 
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lengths defined (figure 2 shows the results for these three lengths). Nevertheless, the 
ferromagnetic domains change sign at each step and flat interfaces between ferromag- 
netic and antiferromagnetic domains are stable. Thus, the behaviour of the system for 
later times could be more complicated. 

To conclude, our results suggest that, although reversible cellular automata may 
belong to the same universality class as the Ising model at their respective critical 
points, the dynamics of pattern formation exhibits new features, all depending on the 
local action of the rule. In the first case (equation ( 6 ) ) ,  even with the same Hamiltonian, 
the particular transition probability in the cellular automata rule introduces different 
additional correlations at the interfaces which give rise to a different growth law. In 
the third model (equation (7)), the restriction that all the lattice must be updated 
simultaneously leads to a complicated Hamiltonian, producing a very different dynami- 
cal behaviour. Interestingly enough, the growth is still curvature driven and the classical 
Allen-Cahn result is still valid for early times. 

We wish to thank Martin Grant and Ed Gawlinski for many useful discussions. This 
work was supported by NSF Grant no 8312958 and partially by the CIRIT (Generalitat 
de Catalunya) and the US-Spain Cooperative Research program CCB 8402025. 
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